summaryrefslogtreecommitdiffstats
path: root/pages/complex-analysis/one-complex-variable/power-series.md
diff options
context:
space:
mode:
authorJustin Gassner <justin.gassner@mailbox.org>2023-09-12 07:36:33 +0200
committerJustin Gassner <justin.gassner@mailbox.org>2024-01-13 20:41:27 +0100
commit777f9d3fd8caf56e6bc6999a4b05379307d0733f (patch)
treedc42d2ae9b4a8e7ee467f59e25c9e122e63f2e04 /pages/complex-analysis/one-complex-variable/power-series.md
downloadsite-777f9d3fd8caf56e6bc6999a4b05379307d0733f.tar.zst
Initial commit
Diffstat (limited to 'pages/complex-analysis/one-complex-variable/power-series.md')
-rw-r--r--pages/complex-analysis/one-complex-variable/power-series.md62
1 files changed, 62 insertions, 0 deletions
diff --git a/pages/complex-analysis/one-complex-variable/power-series.md b/pages/complex-analysis/one-complex-variable/power-series.md
new file mode 100644
index 0000000..0147f31
--- /dev/null
+++ b/pages/complex-analysis/one-complex-variable/power-series.md
@@ -0,0 +1,62 @@
+---
+title: Power Series
+parent: One Complex Variable
+grand_parent: Complex Analysis
+nav_order: 1
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .definition-title }
+> Definition ({{ page.title }})
+>
+> Let $X$ be a complex Banach space.
+> A *power series* (with values in $X$) is an infinite series of the form
+>
+>
+> $$
+> \sum_{n=0}^{\infty} x_n (z - a)^n = x_0 + x_1 (z-a) + x_2 (z-a)^2 + \cdots,
+> $$
+>
+> where $x_n \in X$ is the *$n$th coefficient*,
+> $z$ is a complex variable and
+> $a$ is the *center* of the series.
+
+{: .lemma }
+> Suppose the Banach space valued power series $\sum_{n=0}^{\infty} x_n (z - a)^n$ converges for $z = a + w$.
+> Then it converges absolutely for all $z$ with $\abs{z-a} < \abs{w}$.
+
+{% proof %}
+TODO
+{% endproof %}
+
+{: .theorem }
+> Suppose $\sum_{n=0}^{\infty} x_n (z - a)^n$ is a Banach space valued power series.
+> Then either
+>
+> - the series converges only for $z=a$ (formally $R=0$), or
+> - there exists a number $0<R<\infty$ such that
+> the series converges absolutely whenever $\abs{z-a} < R$
+> and diverges whenever $\abs{z-a} > R$, or
+> - the series converges absolutely for all $z \in \CC$ (formally $R=\infty$).
+>
+> The number $R \in [0,\infty]$ is called the *radius of convergence* of the power series.
+
+{% proof %}
+TODO
+{% endproof %}
+
+{: .theorem-title }
+> Cauchy–Hadamard Formula
+>
+> Let $\sum_{n=0}^{\infty} x_n (z - a)^n$ be a Banach space valued power series
+> with radius of convergence $R$. Then
+>
+> $$
+> \frac{1}{R} = \limsup_{n \to \infty} \norm{x_n}^{1/n}.
+> $$
+
+{% proof %}
+TODO
+{% endproof %}