summaryrefslogtreecommitdiffstats
path: root/pages/operator-algebras/banach-algebras/index.md
diff options
context:
space:
mode:
authorJustin Gassner <justin.gassner@mailbox.org>2024-02-15 05:11:07 +0100
committerJustin Gassner <justin.gassner@mailbox.org>2024-02-15 05:11:07 +0100
commit7c66b227a494748e2a546fb85317accd00aebe53 (patch)
tree9c649667d2d024b90b32d36ca327ac4b2e7caeb2 /pages/operator-algebras/banach-algebras/index.md
parent28407333ffceca9b99fae721c30e8ae146a863da (diff)
downloadsite-7c66b227a494748e2a546fb85317accd00aebe53.tar.zst
Update
Diffstat (limited to 'pages/operator-algebras/banach-algebras/index.md')
-rw-r--r--pages/operator-algebras/banach-algebras/index.md42
1 files changed, 23 insertions, 19 deletions
diff --git a/pages/operator-algebras/banach-algebras/index.md b/pages/operator-algebras/banach-algebras/index.md
index 3335d78..9d70df8 100644
--- a/pages/operator-algebras/banach-algebras/index.md
+++ b/pages/operator-algebras/banach-algebras/index.md
@@ -80,7 +80,7 @@ $$
(\mathbf{1}-x) s_n = s_n (\mathbf{1}-x) = \mathbf{1} - x^{n+1}.
$$
-In the limit $n \to \infty$ we obtain $(\mathbf{1}-x) s = s (\mathbf{1}-x) = \mathbf{1}$,
+In the limit $n \to \infty$ we obtain $(\mathbf{1}-x) s = s (\mathbf{1}-x) = \mathbf{1}$,
because multiplication in a Banach algebra is continuous, and because $y^n \to 0$ when $\norm{y} < 1$.
This proves that $s$ is the inverse of $\mathbf{1}-x$.
@@ -94,10 +94,12 @@ Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
{: .mb-0 }
{: .my-0 }
-- The *spectrum* of $x$ is the set $\sigma(x) = \lbrace\lambda \in \CC : x - \lambda$ is not invertible in $\mathcal{A}\rbrace$. \
+- The *spectrum* of $x$ is the set
+ $\sigma(x) = \lbrace\lambda \in \CC : x - \lambda$ is not invertible in $\mathcal{A}\rbrace$. \
The elements of $\sigma(x)$ are called *spectral values* of $x$.
- The *resolvent set* of $x$ is the set $\rho (x) = \CC \setminus \sigma(x)$. \
- For $\lambda \in \rho(x)$ the *resolvent* of $x$ is the algebra element $R_{\lambda} = (\lambda - x)^{-1}$. \
+ For $\lambda \in \rho(x)$ the *resolvent* of $x$ is
+ the algebra element $R_{\lambda} = (\lambda - x)^{-1}$. \
The mapping $R : \rho(x) \to \mathcal{A}$, $\lambda \mapsto R_{\lambda}$, is called *resolvent map*.
{% enddefinition %}
@@ -119,7 +121,7 @@ $$
{% proof %}
Let $\lambda$ be in the resolvent set of $x$.
-Then $\lambda - x$ is invertible, and we have for all $\mu \in \CC$
+Then $\lambda - x$ is invertible, and we have for all $\mu \in \CC$
$$
\mu - x = \bigl(\mathbf{1} - (\lambda - \mu) (\lambda - x)^{-1}\bigr) (\lambda - x).
@@ -138,20 +140,22 @@ the claimed formula for its inverse follows by an application of
the rule $(ab)^{-1} = b^{-1} a^{-1}$ for invertible $a,b \in \mathcal{A}$.
{% endproof %}
-{: .corollary #resolvent-set-is-open #spectrum-is-closed }
-> The resolvent set $\rho(x)$ is open and the spectrum $\sigma(x)$ is closed.
+{% corollary %}
+The resolvent set $\rho(x)$ is open and the spectrum $\sigma(x)$ is closed.
+{% endcorollary %}
-{: .corollary #resolvent-map-is-analytic }
-> Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
-> The resolvent map
->
-> $$
-> R : \rho(x) \longrightarrow \mathcal{A}, \quad \lambda \longmapsto R_{\lambda} = (\lambda - x)^{-1},
-> $$
->
-> is (strongly) analytic.
+{% corollary %}
+Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
+The resolvent map
+
+$$
+R : \rho(x) \longrightarrow \mathcal{A}, \quad \lambda \longmapsto R_{\lambda} = (\lambda - x)^{-1},
+$$
+
+is (strongly) analytic.
+{% endcorollary %}
- ---
+---
{: .proposition #spectrum-is-not-empty }
> Suppose $x$ is an element of a unital Banach algebra.
@@ -169,7 +173,7 @@ For $\abs{\lambda} > 2 \norm{x}$ we may expand $R_{\lambda}$ into a [Neumann ser
$$
R_{\lambda}
= (\lambda - x)^{-1}
-= \lambda^{-1} (\mathbf{1} - \lambda^{-1} x)^{-1}
+= \lambda^{-1} (\mathbf{1} - \lambda^{-1} x)^{-1}
= \lambda^{-1} \sum_{n=0}^{\infty} (\lambda^{-1} x)^n,
$$
@@ -177,7 +181,7 @@ and make the estimate
$$
\norm{R_{\lambda}}
-\le \abs{\lambda}^{-1} (1 - \norm{\lambda^{-1} x})^{-1}
+\le \abs{\lambda}^{-1} (1 - \norm{\lambda^{-1} x})^{-1}
= (\abs{\lambda} - \norm{x})^{-1}
< \norm{x}^{-1}.
$$
@@ -197,7 +201,7 @@ For any Banach algebra $A$,
the mapping $\varphi : \CC \to A$, $\lambda \mapsto \lambda \mathbf{1}$,
is linear, multiplicative and isometric, hence injective.
Let $x$ be any element of $A$.
-Since its
+Since its
[spectrum is not empty](/pages/operator-algebras/banach-algebras/index.html#spectrum-is-not-empty),
there must exist a complex number $\lambda$
such that $x - \lambda \mathbf{1}$ is not invertible.